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Vorlesungsplan

Datum Thema
19. Marz  Motivation & Organisation
2. April  Grundlagen Unix/Linux
11. April Dateisystem und Rechteverwaltung
18. April dotfiles & Linux Installation
25. April Prozesse und Benutzer
2.Mai Shell Scripting
9. Mai VIM Editor
16. Mai  Suchen und Finden
23.Mai 7?7
30. Mai Wiederholung und PVL-Vorbereitung
6.Juni PVL Termin
13. Juni  Pfingstferien
20.Juni  Zusammenfassung & Feedback
27.Juni  Bonus: Wunschthema, Docker, AWS, ...




Prufung / PVL

Am 6. Juni 2019 um XX:YY
Anmeldung in LSF und Moodle

LSF bis Montag, 29. April 2019 | Moodle bis Sonntag, 5. Mai 2019

KEIN Internet!
Moodle Dateien/Folien erlaubt (keine Links)

Terminal/Shell erlaubt



Wiederholung

Betriebssysteme

e Abstraktionsschicht zwischen Hardware und Userspace/Apps
e Teilt CPU, RAM, ... zwischen Prozessen auf (Scheduling)

e Diverse Scheduling Algorithmen verfugbar



& 5
Kurztest &+

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

e Zeitlimit: 25 Minuten
e Befehle immer so angeben, dass man sie direkt im Terminal verwenden konnte!

man Befehl nutzen!

Viel Erfolg!


https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

5
Kurztest ?)’

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

e Zeitlimit: 25 Minuten
e Befehle immer so angeben, dass man sie direkt im Terminal verwenden konnte!

man Befehl nutzen!

Passwort: Stadtbienen

Viel Erfolg!


https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229
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(virtualisierte) CPU

e Single-Tasking: max. 1 Prozess ausfliihrbar (Microcontroller)

e Multi-Tasking: mehrere Prozesse gleichzeitig ausfuhrbar
= Kooperatives Multi-Tasking: Prozesse kbnnen CPU abgeben

= Preemptives Multi-Tasking: Prozesse mussen CPU abgeben Scheduler
des OS teilt CPU den Prozessen zu (via Time-Slicing)



Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

‘OS ‘15
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Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde
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Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde
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Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

BAIK 4K J=1

Fair Scheduling Algorithmus
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Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
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Zwei Apps, jede zwolf Slots pro Sekunde
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Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
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Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
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Time Slice Scheduling
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Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
WAL AL AL JIAL AL AL SEIAL QIAL AL QIAL AL AL 45

Frequenz/Tick Rate auf echten Systemen?
10Hz? 75Hz? 100Hz?



Time Slice Scheduling e +0
1000Hz
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Time Slice Scheduling e +06

Frequenz/Tick Rate auf echten Systemen, in Hertz (Hz)

$ cat /boot/config-4.19.0-4-amd64 | grep CONFIG HZ

CONFIG HZ 250=y

CONFIG HZ=250




Time Slice Scheduling e+ 0

e 250Hz: Desktop Systeme; guter Kompromiss fur viele

Anwendungen (friher 100Hz)

e 1000Hz: Server Systeme mit vielen Tausend Prozessen oder

speziellen Anwendungen

e Variabel: Laptop / System zur numerischen DV



nice

e Scheduling-Priotitat eines Prozesses
e Dargestellt als Zahl

Befehle

S nice

S renice



(virtualisierter) RAM
Phys. Speicher / RAM addressiert via 0x0000.. - OxFFFF..
unterteilt in Pages (Blocke fester GroRe)

Auslagern von Pages auf Festplatte moglich (langsam!)
= Swap / swapping auf Linux/Unix/macOS

= Pagefile in Windows
Hugepages?

Virtueller Speicher gemappt auf physikalischen Speicher



(virtualisierter) RAM

Page Size (in Bytes) auf echten Systemen

$ getconf PAGE SIZE

4096

Hugepages aktiviert/verfugbar?

$ mount | grep huge

hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,pagesize=2M)




(virtualisierter) RAM




(virtualisierter) RAM

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:

P\ [0x00] --> [0x02]
P\ [0x01] --> [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:
I\\ [0x00] -->
I\ [0x01] —-->
# [0x00] -->
# [0x03] -—>

(0x02
0x05]

(0x01
(0x04’

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

Physikalisch: [0x00] [0x01] [0x02] [0x03][0x04] [0x05]

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:
I\\ [0x00] -->
I\ [0x01] —-->
# [0x00] -->
# [0x03] -—>

(0x02
0x05]

(0x01
(0x04’

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]



(virtualisierter) RAM

Verfugbarer Speicher/Swap

shared buff/cache

3 13567




Prozess Management Tools

top

e Klassiker zum Prozesse darstellen
e Uberall vorhanden

PS

o Klassiker zum Prozesse ausgeben mit diversen Parametern
e Uberall vorhanden

$ ps
kill

e Klassiker zum Prozesse beenden oder toten
e Sendet Signal zu Prozess, kein abschiel3en (ausser -9)

S kill <Prozess ID>



Prozess Management Tools

htop

e "schdner" @ mehr Ubersicht, mehr Werte/Features
e meist direkt als Paket verfugbar

gotop

e noch "schoner" & unterstiitzt auch Netzwerk, Sensoren, ...
® g0 (golangorg) bendtigt, einfach zu installieren

$ gotop --statusbar --rate=l1

glances

e auch "schon" & unterstutzt auch Docker Container, ...
e meist direkt als Paket verfligbar

$ glances --time 2 --byte --percpu



https://golang.org/

Demo @M

htop
gotop
glances



User-Management
e User/Gruppen Konzept mit 1 :n Beziehung

e |dentifiziert Uber eindeutige uid bzw. gid
(uid/gid <1000 fiir System-Benutzer/Gruppen)

$ useradd --uid 1111 --home-dir /tmp --shell /bin/bash hft

S userdel hft




Hands-on!

Prozess- und Usermanagement
ol



Prozess-Management Aufgaben

Ermitteln Sie die erlaubten Werte fliir die Prozess Prioritat und
schauen sie sich die Prioritaten der laufenden Prozesse an

Erkunden Sie die Parameter von ps und testen sie die Beispiele

aus der man Page

Starten Sie top und rufen die integrierte Hilfe auf. Andern sie nun
die Sortierreihenfolge der aufgelisteten Prozesse.

Was bewirkt kill -9 $S$? Woflr steht $8?

Andern sie die Priotitat eines CPU-intensiven Prozesses auf die
"schlechteste" mogliche Prioritat. Was stellen sie fest?



User-Management Aufgaben

Ermitteln Sie ihre User-ID (uid)
Ermitteln Sie die uid ihrer beiden Sitznachbarn
Ermitteln Sie in welchen Gruppen sie sind

Welche Informationen liefern ihnen folgende Befehle
= whoami

= who

"W

= last



