Rechnerpraxis

Prozess- & Userverwaltung

Hochschule
fur Technik
Stuttgart

S$S19 | INF 1

Ben Lebherz
benjamin.lebherz@hft-stuttgart.de

mailto:benjamin.lebherz@hft-stuttgart.de

Vorlesungsplan

Datum Thema
19. Marz Motivation & Organisation
2. April Grundlagen Unix/Linux
11. April Dateisystem und Rechteverwaltung
18. April dotfiles & Linux Installation
25. April Prozesse und Benutzer
2.Mai Shell Scripting
9. Mai VIM Editor
16. Mai Suchen und Finden
23.Mai 7?7
30. Mai Wiederholung und PVL-Vorbereitung
6.Juni PVL Termin
13. Juni Pfingstferien
20.Juni Zusammenfassung & Feedback
27.Juni Bonus: Wunschthema, Docker, AWS, ...

Prufung / PVL

Am 6. Juni 2019 um XX:YY
Anmeldung in LSF und Moodle

LSF bis Montag, 29. April 2019 | Moodle bis Sonntag, 5. Mai 2019

KEIN Internet!
Moodle Dateien/Folien erlaubt (keine Links)

Terminal/Shell erlaubt

Wiederholung

Betriebssysteme

e Abstraktionsschicht zwischen Hardware und Userspace/Apps
e Teilt CPU, RAM, ... zwischen Prozessen auf (Scheduling)

e Diverse Scheduling Algorithmen verfugbar

& 5
Kurztest &+

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

e Zeitlimit: 25 Minuten
e Befehle immer so angeben, dass man sie direkt im Terminal verwenden konnte!

man Befehl nutzen!

Viel Erfolg!

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

5
Kurztest ?)’

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

e Zeitlimit: 25 Minuten
e Befehle immer so angeben, dass man sie direkt im Terminal verwenden konnte!

man Befehl nutzen!

Passwort: Stadtbienen

Viel Erfolg!

https://moodle.hft-stuttgart.de/mod/quiz/view.php?id=137229

Rechnerpraxis

Prozess- & Userverwaltung

Hochschule
fur Technik
Stuttgart

S$S19 | INF 1

Ben Lebherz
benjamin.lebherz@hft-stuttgart.de

mailto:benjamin.lebherz@hft-stuttgart.de

(virtualisierte) CPU

e Single-Tasking: max. 1 Prozess ausfliihrbar (Microcontroller)

e Multi-Tasking: mehrere Prozesse gleichzeitig ausfuhrbar
= Kooperatives Multi-Tasking: Prozesse kbnnen CPU abgeben

= Preemptives Multi-Tasking: Prozesse mussen CPU abgeben Scheduler
des OS teilt CPU den Prozessen zu (via Time-Slicing)

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

‘OS ‘15

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

BAIR |

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

RAIK 4B |

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

BAIK 4N Jham

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

BAIK 4K J=1

Time Slice Scheduling

Vier Apps, jede einen Slot pro Sekunde

BAIK 4K J=1

Fair Scheduling Algorithmus

0s

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
RHAL QAL AL 4

1s

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
WAL AL AL JIAL AL QAL di 1s

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
AL AL AL JIAD AAD AAE JRIAE AL AL 4 1s

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
WAL AL AL JIAL AL AL SEIAL QIAL AL QIAL AL AL 45

Time Slice Scheduling

Zwei Apps, jede zwolf Slots pro Sekunde
WAL AL AL JIAL AL AL SEIAL QIAL AL QIAL AL AL 45

Frequenz/Tick Rate auf echten Systemen?
10Hz? 75Hz? 100Hz?

Time Slice Scheduling e +0
1000Hz

AR (o ANT To AR T ARHE T I ARHE Te AR Tw ARSE Tw ARSE Te JARTE To AR T ARHE T I ARHE To ARSE Tw AURE Tw AN To AR T
ATZ (e AR (o AR T ARTE T I AR Te AR Tw AR Tu ARE Te JARTE To AR T AR T I ARHE Te AR Tw ATRE Tw AN To AR Te
ADE I AR Tw AT To AR Tw ARHE To AR Tu AR Tu AR Tu AR To AR Te AR To AR Te ARTE To AR Te ARTE To AUSE Tw)
ADTE T AR Tw AT To AR Tu ARTE Tu T AETE Tu AR Tu AR Tw JARTE To AR Te ARHE To AR Te ARTE To AR Tu ARTE To AUSE Tw)
AT I ANR T AT Tu AR Tu ARHE Tu I AETE Tu ARTE Tu I ARTE Tw JARHE To AR To ARHE To ARSE Tu ARTE To AR Tu ARTE To AESE Tu)
AT Jo AN To AR T ARTE T I ARHE To AR Tw ARSE Tu AR Te JARTE To ARTE T ARHE T ARHE To ARSE Tw AERE Tw AR Te AR T
AR (o ANT To AR T ARHE T ARHE Te AR Tw ARSE Tw ARE Te JARTE To AR T ARHE T ARHE To ARRE Tw AERE Tw AN Te AR Tel
AR (e ANR To AR T ARTE T I AR Te AR Tw AR Tw ARSE Te JARTE To AR To AR T ARHE To AR Tw ATRE Tw AN To AR Te
ATZ IoANTE To AR Te ARHE T I AR To AT Tw AR Tw AFSE Yo JARTE To AR To AR T AR To AR Tw ATTE Tw AN To AR Ve
ADTE o ANR Tw ATHE To AR Tu ARFE Tu I AETE Tu AR Tu ARTE Tw AT To AR Te ARHE To AR Te ARTE To AR Tu ARTE To AUSE Tw)
ADE T AR Tw AT Tu AR Tu ARHE Tu I AETE Tu ARTE Yo ARTE Tw JARTE To AR To ARHE To ARSE Te ARTE To ARSE Te ARHE To AUSE Tu)
AT I ANR ToADTE T AN Yu ARRE Tu I AEEE Tu AEFE Tu AFTE T JARHE To AR To ARHE To I ARSE Te ARRE To I ARSE Tu ARHE To AESE Te)
AR IwANT To AR T ARHE T I ARHE Te AR Tw ARSE Tw AR Te JARTE To AR T ARHE T ARHE To ARRE Tw AURE Tw AN Te AR T
ADZ (e ANR (o AN Te ARHE T I AR Tu AR Tw ARSE Tw ARE Te JARTE To AR T ARHE T I ARHE To AR Tw AURE Tw AN To AR Te
AR (o AR To AR Te ARHE T I AR Tu AT Tw AR Tw ARSE Yo JARTE To AR T AR T I ARHE To AR Tw ATTE Tw AN To AR Te
ADE I AR To AT To AR Tw ARHE Tu I AETE Tu AR Tu AR Tu JARTE To AR Te ARHE To AR Te ARTE To AR Te ARTE To AUSE Tu)

Time Slice Scheduling e +06

Frequenz/Tick Rate auf echten Systemen, in Hertz (Hz)

$ cat /boot/config-4.19.0-4-amd64 | grep CONFIG HZ

CONFIG HZ 250=y

CONFIG HZ=250

Time Slice Scheduling e+ 0

e 250Hz: Desktop Systeme; guter Kompromiss fur viele

Anwendungen (friher 100Hz)

e 1000Hz: Server Systeme mit vielen Tausend Prozessen oder

speziellen Anwendungen

e Variabel: Laptop / System zur numerischen DV

nice

e Scheduling-Priotitat eines Prozesses
e Dargestellt als Zahl

Befehle

S nice

S renice

(virtualisierter) RAM
Phys. Speicher / RAM addressiert via 0x0000.. - OxFFFF..
unterteilt in Pages (Blocke fester GroRe)

Auslagern von Pages auf Festplatte moglich (langsam!)
= Swap / swapping auf Linux/Unix/macOS

= Pagefile in Windows
Hugepages?

Virtueller Speicher gemappt auf physikalischen Speicher

(virtualisierter) RAM

Page Size (in Bytes) auf echten Systemen

$ getconf PAGE SIZE

4096

Hugepages aktiviert/verfugbar?

$ mount | grep huge

hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,pagesize=2M)

(virtualisierter) RAM

(virtualisierter) RAM

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:

P\ [0x00] --> [0x02]
P\ [0x01] --> [0x05]

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:
I\\ [0x00] -->
I\ [0x01] —-->
[0x00] -->
[0x03] -—>

(0x02
0x05]

(0x01
(0x04’

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

Physikalisch: [0x00] [0x01] [0x02] [0x03][0x04] [0x05]

FA\ [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]
& [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

Page Table:
I\\ [0x00] -->
I\ [0x01] —-->
[0x00] -->
[0x03] -—>

(0x02
0x05]

(0x01
(0x04’

Physikalisch: [0x00] [0x01] [0x02] [0x03] [0x04] [0x05]

(virtualisierter) RAM

Verfugbarer Speicher/Swap

shared buff/cache

3 13567

Prozess Management Tools

top

e Klassiker zum Prozesse darstellen
e Uberall vorhanden

PS

o Klassiker zum Prozesse ausgeben mit diversen Parametern
e Uberall vorhanden

$ ps
kill

e Klassiker zum Prozesse beenden oder toten
e Sendet Signal zu Prozess, kein abschiel3en (ausser -9)

S kill <Prozess ID>

Prozess Management Tools

htop

e "schdner" @ mehr Ubersicht, mehr Werte/Features
e meist direkt als Paket verfugbar

gotop

e noch "schoner" & unterstiitzt auch Netzwerk, Sensoren, ...
® g0 (golangorg) bendtigt, einfach zu installieren

$ gotop --statusbar --rate=l1

glances

e auch "schon" & unterstutzt auch Docker Container, ...
e meist direkt als Paket verfligbar

$ glances --time 2 --byte --percpu

https://golang.org/

Demo @M

htop
gotop
glances

User-Management
e User/Gruppen Konzept mit 1 :n Beziehung

e |dentifiziert Uber eindeutige uid bzw. gid
(uid/gid <1000 fiir System-Benutzer/Gruppen)

$ useradd --uid 1111 --home-dir /tmp --shell /bin/bash hft

S userdel hft

Hands-on!

Prozess- und Usermanagement
ol

Prozess-Management Aufgaben

Ermitteln Sie die erlaubten Werte fliir die Prozess Prioritat und
schauen sie sich die Prioritaten der laufenden Prozesse an

Erkunden Sie die Parameter von ps und testen sie die Beispiele

aus der man Page

Starten Sie top und rufen die integrierte Hilfe auf. Andern sie nun
die Sortierreihenfolge der aufgelisteten Prozesse.

Was bewirkt kill -9 S? Woflr steht $8?

Andern sie die Priotitat eines CPU-intensiven Prozesses auf die
"schlechteste" mogliche Prioritat. Was stellen sie fest?

User-Management Aufgaben

Ermitteln Sie ihre User-ID (uid)
Ermitteln Sie die uid ihrer beiden Sitznachbarn
Ermitteln Sie in welchen Gruppen sie sind

Welche Informationen liefern ihnen folgende Befehle
= whoami

= who

"W

= last

